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The thermal confinement time of a magnetized fusion plasma is essentially determined by turbulent heat
conduction across the equilibrium magnetic field. To achieve the study of turbulent thermal diffusivities,
Vlasov gyrokinetic description of the magnetically confined plasmas is now commonly adopted, and offers the
advantage over fluid models �MHD, gyrofluid� to take into account nonlinear resonant wave-particle interac-
tions which may impact significantly the predicted turbulent transport. Nevertheless kinetic codes require a
huge amount of computer resources and this constitutes the main drawback of this approach. A unifying
approach is to consider the water-bag representation of the statistical distribution function because it allows us
to keep the underlying kinetic features of the problem, while reducing the Vlasov kinetic model into a set of
hydrodynamic equations, resulting in a numerical cost comparable to that needed for solving multifluid models.
The present paper addresses the gyro-water-bag model derived as a water-bag-like weak solution of the Vlasov
gyrokinetic models. We propose a quasilinear analysis of this model to retrieve transport coefficients allowing
us to estimate turbulent thermal diffusivities without computing the full fluctuations. We next derive another
self-consistent quasilinear model, suitable for numerical simulation, that we approximate by means of discon-
tinuous Galerkin methods.
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I. INTRODUCTION

The energy confinement time in controlled fusion devices
is governed by the turbulent evolution of low-frequency
electromagnetic fluctuations of nonuniform magnetized plas-
mas. Microinstabilities are now commonly held responsible
for this turbulence transport giving rise to anomalous radial
energy transport in tokamak plasmas. Low-frequency ion-
temperature-gradient-driven �ITG� instability is one of the
most serious candidates to account for the anomalous trans-
port �1�, as well as the so-called trapped electron modes �2�.
The computation of turbulent thermal diffusivities in fusion
plasmas is of prime importance since the energy confinement
time is determined by these transport coefficients. During
recent years, ion turbulence in tokamaks has been intensively
studied both with fluid �see, for instance, �3–5�� and gyroki-
netic simulations using PIC codes �6–8� or Vlasov codes
�9–12�.

It is now well known that the level of description, namely
kinetic or fluid, may significantly impact the instability
threshold as well as the predicted turbulent transport. Conse-
quently, it is important that gyrokinetic simulations quantify
the departure of the local distribution function from a Max-
wellian, which constitutes the usual assumption of fluid clo-
sures.

In a recent paper �13� a comparison between fluid and
kinetic approach has been addressed by studying a three-

dimensional kinetic interchange. A simple drift kinetic model
is described by a distribution depending only on two spatial
dimensions and parametrized by the energy. In that case it
appears that the distribution function is far from a Maxwell-
ian and cannot be described by a small number of moments.
Wave-particle resonant processes certainly play an important
role and most of the closures that have been developed will
be inefficient.

On the other hand, although more accurate, the kinetic
calculation of turbulent transport is much more demanding in
computer resources than fluid simulations. This motivated us
to revisit an alternative approach based on the water-bag rep-
resentation.

Introduced initially by DePackh �14�, Feix and co-
workers �15–17�, the water-bag model was shown to bring
the bridge between fluid and kinetic description of a colli-
sionless plasma, allowing to keep the kinetic aspect of the
problem with the same complexity as the fluid model. Fur-
thermore this model was extended into a double water-bag
by Berk and Roberts �18� and Finzi �19�, and generalized to
the multiple water-bag �20–23�.

The aim of this paper is to use the water-bag description
for gyrokinetic modeling. Let us notice that the water-bag-
like weak solution of the gyrokinetic equation has the advan-
tage of avoiding the treatment of singularities in the complex
plane, encountered in the Landau description of Vlasovian
plasmas, by introducing Landau contours and analytic con-
tinuation of the quantities involved.

After a brief introduction of the well-known gyrokinetic
equations hierarchy, we present the gyro-water-bag �GWB�
model. Then we perform a quasilinear analysis of the GWB
system allowing us to show that the model possesses some
invariants such as the total density, momentum, and energy.
Next we derive quasilinear equations for describing weak
turbulence of magnetized plasma in a cylinder, in a form
which is well suited for computation. Therefore, we propose
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a numerical approximation scheme, based on discontinuous
Galerkin methods to solve these equations. Then we present
some numerical results obtained in the context of plasma
turbulence driven by ITG instabilities. Finally we compare
with results given by fully nonlinear simulations.

II. GYRO-WATER-BAG MODEL

A. Gyrokinetic equation

Strictly speaking, one must solve a six-dimensional ki-
netic equation to determine the statistical distribution func-
tion of one particle. However, for strongly magnetized plas-
mas nonlinear gyrokinetic equations are traditionally derived
through a multiple space-time scale expansion that relies on
the existence of one or more small dimensionless ordering
parameters. For instance, the Larmor radius � is much
smaller than the characteristic background magnetic field or
plasma density and temperature nonuniformity length scale
L. Besides the cyclotron motion is faster than the turbulent
motion at least during the early phase of the nonlinear inter-
actions. The conventional procedure �24�, to derive the gy-
rokinetic Vlasov equations consists in computing an iterative
solution of the gyroangle-averaged Vlasov equation pertur-
batively expanded in powers of the dimensionless parameter
� /L. A modern foundation of nonlinear gyrokinetic theory
�25–27� is based on a two-step Lie-transform procedure,
from particle Hamiltonian dynamics to gyrocenter motion
through guiding-center dynamics and a reduced variational
principle �27,28�, allowing us to derive self-consistent ex-
pressions for the nonlinear gyrokinetic Vlasov Maxwell
equations. Therefore, for strongly magnetized plasmas, non-
linear gyrokinetic theory allows us to recast the Vlasov equa-
tion into a five-dimensional equation in which the fast gy-
roangle does not appear explicitly but in which the main
particle information is not lost.

Let f = f�t ,r ,v� ,�� be the gyrocenter distribution function
for ions. Therefore, the nonlinear gyrokinetic equations as
derived in �24–27� are

Dtf = �t f + Ẋ� · ��f + Ẋ� · ��f + v̇��v�
f = 0 �1�

with

Ẋ� = v�b, Ẋ� = vE + v�B + vc,

vE =
1

B�
�b � �J�� ,

v�B =
�

qiB�
�b � �B ,

vc =
miv�

2

qiB�
� �b � �B

B
+

�� � B��

B
� =

miv�
2

qiB�
� b �

N

Rc
,

v̇� = −
1

mi
�b +

miv�

qiB�
�b �

N

Rc
� · �� � B + qi � J��� ,

B� = B +
miv�

qi
� � b, B�

� = B� · b ,

where b=B /B denotes the unit vector along magnetic field
line, J� denotes the gyroaverage operator, N /Rc is the field
line curvature, qi=Zie, e�0 being the elementary Coulomb
charge, and �=miv�

2 / �2B� is the first adiabatic invariant of
the ion gyrocenter. The structure of the distribution function
f , solution of �1�, is of the form

f�t,r,v�,�� = �
�

f��t,r,v����� − ��� . �2�

Let us notice that an interesting problem is to know what is
the asymptotic statistical distribution function in � in �2� if
we consider an infinite number of magnetic moments, be-
cause it allows us to save CPU time and memory space in
numerical codes. In �29–31�, the authors take the distribution
mi exp�−�B /Ti0� /Ti0. If we now suppose k��i small and ne-
glecting all terms smaller than O�k�

2 �i
2�, then we obtain the

Poisson equation

− Ziqi�� · �ni�i
2

Ti
���� = �Di

2 Ziqi
ni0

Ti0
	�

+ Zi	 2

�i

qi
d�dv�J�f − ne,

�3�

where �i
2=vthi

2 /�i
2=Ti / �mi�i

2� is the ion Larmor radius, and
�Di

2 =kBTi / �4
�0Zi
2e2ni0� is the ion Debye length. The left-

hand side of Eq. �3� corresponds to the difference between
the gyroaveraged density

�i

qi

d�dv�J�f and the laboratory

ion density Ni which is the lowest contribution to the density
fluctuations provided by the polarization drift.

Since we are mainly interested in this paper by the
kinetic-vs-fluid problem, the first equation to be addressed is
to look at the effects of the transverse drift-velocity E�B
coupled to the parallel dynamics while the curvature effects
are considered as a next stage of the study and are conse-
quently beyond the scope of the present paper. As a result, in
a sequel we deal with a reduced drift kinetic model in cylin-
drical geometry by making the following approximations.

�i� In addition of cylindrical geometry, we suppose that
the magnetic field B is uniform and constant along the axis
of the column �z coordinate, B=Bb=Bez�. It follows that the
perpendicular drift velocity does not admit any magnetic cur-
vature or gradient effect and especially we have B�=B. It is
important to point out that the water-bag concept �i.e., phase
space conservation�, that will be presented below, is not af-
fected by adding finite Larmor radius or curvature terms,
except, of course, a more complicated algebra.

�ii� We suppose a finite discrete sequence of adiabatic
invariants 
= ��� linked to a finite discrete sequence of ion
Larmor radius �= ��� by �=�2�iqi /2. The linear differential
operator of gyroaveraging J� becomes the Bessel function
J0�k�


2� /
�iqi� in the Fourier space.
�iii� We linearize the expression for the polarization den-

sity, npol, in Eq. �3�,
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npol = �� · � ni

B�ci
���� ,

by approximating ni to the background density of the Max-
wellian distribution function ni0, and by assuming that the
ion cyclotron frequency �i is a constant �0. Moreover, we
assume that the ion Debye length �Di

is small compared to
the ion Larmor radius �i.

�iv� The electron inertia is ignored, i.e., we choose an
adiabatic response to the low-frequency fluctuations for the
electrons. In other words, the electrons density follows the
Boltzmann distribution

ne = ne0 exp� e

kBTe
�� − ����M�� ,

where ���M denotes the average of the electrical potential �
over a magnetic surface. The parameter � is a control param-
eter for zonal flows. It takes the value zero or one.

Under theses assumptions the evolution of the ion gyro-
center distribution function f�= f��t ,r� ,z ,v�� obeys the gy-
rokinetic Vlasov equation

�t f� + J�vE · ��f� + v��zf� +
qi

mi
J�E��v�

f� = 0 �4�

for the ions �qi ,Mi�, coupled to an adiabatic electron re-
sponse via the quasineutrality assumption

− �� · � ni0

B�0
���� +

e�ni0

Ti0
�� − ����M�

= 2
 �
��


	
R

�i

qi

J�f��t,r,v��dv� − ni0. �5�

Here qi=Zie, Zini0=ne0, Te=Te0, �=Ti0 /Te0, �� �0,1�, E
=−��, and vE is the E�B /B2 drift velocity. The ion tem-
perature profile Ti0 and the ion density profile ni0 vary along
the radial direction.

The most important and interesting feature is that f de-
pends, through a differential operator, only on the velocity
component v� parallel to B.

B. GWB model

Let us now turn back to the gyrokinetic equation �4�.
Since the distribution f��t ,r� ,z ,v�� takes into account only
one velocity component v� a water-bag solution can be con-
sidered �21�. Let us consider 2N nonclosed contours in the
�r ,v��-phase space �see Fig. 1� labeled v�j

+ and v�j
− �where

j=1, . . . ,N, ��
� such that ¯�v�j+1
− �v�j

− � ¯ �0
� ¯ �v�j

+ �v�j+1
+ �¯ and some real numbers

�A�j� j��1,N�,��
 that we call bag heights �see Fig. 2�. We
then define f��t ,r� ,z ,v�� as

f��t,r�,z,v�� = �
j=1

N

A�j�H�v� − v�j
− �t,r�,z��

− H�v� − v�j
+ �t,r�,z��� , �6�

where H is the Heaviside unit step function. The function �6�

is an exact solution of the gyrokinetic Vlasov equation �4� in
the sense of distribution theory, if and only if the set of the
following equations are satisfied:

�tv�j
� + J�vE · ��v�j

� + v�j
� �zv�j

� =
qi

mi
J�E� , �7�

for all j� �1,N� and ��
. The quasineutrality coupling
can be rewritten as

− �� · � ni0

B�0
���� +

e�ni0

Ti0
�� − ����M�

= 2
 �
��


�
j=1

N

A�j
�i

qi
J��v�j

+ − v�j
− � − ni0. �8�

C. Using water-bag Liouville invariants
to reduce phase space dimension

In Eq. �7�, j is nothing but a label since no differential
operation is carried out on the variable v�. What we actually
do is to bunch together particles within the same bag j and
let each bag evolve using the contour equation �7�. Of
course, the different bags are coupled through the quasineu-
trality equation.

This operation appears as an exact reduction of the phase
space dimension �elimination of the velocity variable� in the

1 2f = A + A + A 3

2f = A + A 3

f = A 3v

v

v

v

v

v

+

+

−

−

−

1

1

2

2

3

3

x

v

+

FIG. 1. Gyro-water-bag: Phase space plot for a three-bag
model.

FIG. 2. Gyro-water-bag: Distribution function for a three-bag
model.
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sense that the water-bag concept makes full use of the Liou-
ville invariance in phase space: The fact that A�j are constant
in time is nothing but a straightforward consequence of the
Vlasov conservation Df /Dt=0. Of course, the eliminated ve-
locity reappears in the various bags j �j=1, . . . ,N�, and if we
need a precise description of a continuous distribution a large
N is needed. On the other hand, there is no mathematical
lower bound on N and from a physical point of view many
interesting results can even be obtained with N as small as 1
for electrostatic plasma. For magnetized plasma, N=2 or 3
allow more analytical approaches �32�.

On the contrary, in the Vlasov phase space �r ,v��, the
exchange of velocity is described by a differential operator.
From a numerical point of view, this operator must be ap-
proximated by some finite-difference scheme. Consequently,
a minimum size for the mesh in the velocity space is required
and we are faced with the usual sampling problem. If it can
be claimed that the v� gradients of the distribution function
remain weak enough for some class of problems, then a
rough sampling might be acceptable. However, it is well
known in kinetic theory that wave-particle interaction is of-
ten not so obvious. For instance, steep gradients in the ve-
locity space can be the signature of strong wave-particle in-
teraction and there is the need for a higher numerical
resolution of Vlasov code, while a water-bag description can
still be used with a small bag number. As a matter of fact it
is well known that this mesh problem is closely related to
poor entropy conservation �see, for instance, �33��.

To conclude, the gyro-water-bag offers an exact descrip-
tion of the plasma dynamics even with a small bag number,
allowing more analytical studies and bringing the link be-
tween the hydrodynamic description and full Vlasov one. Of
course this needs a special initial preparation of the plasma
�Lebesgue subdivision�. Furthermore, there is no constraint
on the shape of the distribution function which can be very
far from a Maxwellian. Once initial data has been prepared
using Lebesgue subdivision, the gyro-water-bag equations
give the exact weak �in the sense of the theory of distribu-
tion� solution of the Vlasov equation corresponding to this
initial data. Any initial condition �continuous or not� which is
integrable with respect to the Lebesgue measure can be ap-
proximated accurately with larger N. Therefore, if we need a
precise description of a continuous distribution, it is clear
that a larger N is needed; but even if the numerical effort is
close to a standard discretization of the velocity space in a
regular Vlasov code �using 2N+1 mesh points�, we believe
that the use of an exact water-bag sampling should give bet-
ter results than approximating the corresponding differential
operator.

D. Linking kinetic and fluid descriptions

Let us introduce for each bag j the density n�j = �v�j
+

−v�j
− �A�j and the average velocity u�j = �v�j

+ +v�j
− � /2. After

some algebra, Eq. �7� leads to continuity and Euler equa-
tions, namely

�tn�j + �� · �n�jJ�vE� + �z�n�ju�j� = 0,

�t�n�ju�j� + �� · �n�ju�jJ�vE� + �z�n�ju�j
2 � +

1

mi
�zp�j

=
qi

mi
n�jJ�E� ,

where the partial pressure takes the form p�j
=min�j

3 / �12A�j
2 �. The connection between kinetic and fluid

description clearly appears in the previous multifluid equa-
tions. The case of one bag recovers a fluid description �with
an exact adiabatic closure with �=3�. Consequently, the
gyro-water-bag provides a fully kinetic description which is
shown to be equivalent to a multifluid one.

Actually each bag is a fluid described by Euler’s equa-
tions with a specific adiabatic closure while the coupling
between all the fluids is given by the quasineutrality equation
�8�. The sum over the bags in �8� allows us to recover the
kinetic character from a set of fluid equations. For example,
in the more simple electrostatic Vlasov-Poisson plasma
�16,17,21–23,32�, the well-known Landau damping is recov-
ered by a phase-mixing process of N discrete undamped
fluid eigenmodes which is reminiscent of the Van Kampen-
Case treatment �34,35�. The linearized water-bag model is
nothing but the “discrete” version of the continuous Van Ka-
mpen eigenmodes of the linearized Vlasov-Poisson system.

III. WEAK TURBULENCE THEORY
OF THE GYRO-WATER-BAG MODEL

As shown above, the gyro-water-bag provides a simplifi-
cation of the gyrokinetic description by simply solving a
finite set of contour convective equations �7�. These contour
equations are intrinsically simpler than kinetic ones since
they involve only the real space without having to cope with
velocity resonance leading to complex analytical continua-
tion. Actually the kinetic character is recovered by some
phase-mixing process due to the coupling between all the
bags provided by the quasineutrality equation �8�.

As a first step, the linearized version of gyro-water-bag
equations and the linear stability study of ITG modes have
been extensively developed in a previous paper �32� which
clearly demonstrates the “good properties” of the gyro-
water-bag in the sense described above. It is the aim of this
paper to go beyond the linear theory and use the analytical
facilities of the gyro-water-bag to help at the understanding
of the nature of the radial transport. To this purpose we sug-
gest to derive radial transport equations through a quasilinear
analysis, revealing the diffusive nature of the transport. It is
important to point out that the water-bag concept �i.e., phase
space conservation� is not affected by adding finite Larmor
radius or curvature terms, except of course, for a more com-
plicated algebra. As a result, to improve the comprehension
and simplify the algebra we focus on what is physically im-
portant by assuming the asymptotic limit k��i→0 �drift ki-
netic limit, J�→1� which does not remove generality of the
method but suppresses O�k�

2 �i
2� order regularizing terms. In

order to make the linear and quasilinear analysis �36–41� of
Eqs. �7� and �8�, each physical quantity f � �v j

� ,�� is ex-
panded as a sum of the slowly time-evolving �� ,z�-uniform
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state f0 and a small first-order fluctuating perturbation �f
such that f�t ,r ,� ,z�= f0�t ,r�+�f�t ,r ,� ,z�, where

�f�t,r,�,z� = �
�m,n��0

fmn�t,r�ei�k�z+m�� �9�

with k� =2
n /Lz, and k�=m /r. Let us note that ��f��,z=0,
�f0��,z= f0, where �·��,z denotes �� ,z� averaging, and f−m,−n

= f̄mn.

A. First-order equations

Let us find the equations for the slowly evolving part
��v j0

�� j��1,N� ,�0�. If we perform the �� ,z� average of Eq. �7�
we obtain

�tv j0
� −

1

rB
������r�v j

� − �r�����v j
���,z = 0. �10�

Using Fourier expansion �9�, Eq. �10� becomes

�tv j0
� +

i

r
�r�r �

�m,n��0

k�

B
�̄mnv jmn

� � = 0. �11�

Performing the �� ,z� average of Eq. �8� and setting �0
=1 / �rni0�, yields the equation for the zonal flow �0,

− �0�r� �r�0

�0
� +

eB�0

kBTe0
�1 − ���0

=
�0B

ni0
� �

j�N
A j�v j0

+ − v j0
− � − ni0� . �12�

If we subtract �11� from �7� and �12� from �8�, by neglecting
second-order terms in the perturbation we obtain the follow-
ing equations for the first-order perturbation part:

�tv jmn
� + ik · V j0

�v jmn
� + i�mn� j0

� = 0 �13�

and

− �0�r� �r�mn

�0
� + � eB�0

kBTe0
+

m2

r2 ��mn

=
�0B

ni0
�
j�N

A j�v jmn
+ − v jmn

− � , �14�

where k= �k� ,k��T and

V j0
� = �v j0

�,
�r�0

B
�T

, � j0
� =

qi

mi
k� −

k�

B
�rv j0

� .

The integration of Eq. �13� gives

v jmn
� �t� = v jmn

� �0�exp�− i	
0

t

k · V j0
��s�ds�

− i	
0

t

ds�mn�t − s�� j0
��t − s�

�exp�− i	
t−s

t

k · V j0
����d�� . �15�

We now look for solution of the form Wentzel-Kramers-
Brillouin �WKB ansatz�

fmn�t,r� = f̃mn�t,r�e−i�mnt, �16�

where the phase �mn=�k is a real number such that �−m,−n

=�−k=−�k=−�mn, and where the envelope function f̃mn�t� is
a time slowly varying real function on a time scale such as
�k

−1. Here �k is the growth rate of the ITG instability and �dif
is the time scale of the variation of v j0

� �due to the diffusion�.
The time scale of the fluctuating envelope is greater than the
time scale of the fluctuation oscillation � fo��k

−1, therefore,
we have ��k /�k��1. For the sake of clarity we drop the tilde
notation in the sequel of the paper. The first term on the
right-hand side of �15�, the free-streaming part of the solu-
tion, rapidly damps because of the phase mixing �see �40� for
more details� in the j summation or v� integration on a time
�d��k�v̄�−1, where v̄ is the characteristic spread in the paral-
lel velocity, i.e., the parallel thermal velocity. Provided that
t��d we can drop the initial value term of �15�. Thus, plug-
ging �15� into �14� yields

− �0�r� �r�mn

�0
� + K�mn = − iL	

0

t

C�t,s��mn�t − s�ds ,

�17�

where K=m2 /r2+eB�0 / �kBTe0�, L=�0B /ni0, and

C�t,s� = �
j�N

A j�� j0
+ �t − s�exp�i	

t−s

t

� j0
+ ���d��

− � j0
− �t − s�exp�i	

t−s

t

� j0
− ���d���

with � j0����=�−k ·V j0
���� as the Doppler shifted pulsation.

Once again by phase-mixing arguments, the sum over j
leads to the decay of C�t ,s� with s on a time �d. If this time
is short compared to �dif—the evolution time of
��v j0

�� j��1,N� ,�0�—�due to the diffusion� and to �k
−1—the evo-

lution time of �mn—we may Taylor expand � j0
�, V j0

�, and �mn

� j0
��t − s� = � j0

��t� − �̇ j0
��t�s + O�s2� ,

	
t−s

t

k · V j0
����d� = k · V j0

��t�s + O�s2� ,

�mn�t − s� = �mn�t� − s�̇mn�t� + O�s2� . �18�

From Eq. �17� and Taylor expansions �18�, using

	
0

�

ei�sds = 
���� + iP��� = �+��� ,

where P�·� is the principal-value distribution P�1 / ·�, and ne-
glecting all terms of second order in s we obtain

− �0�r� �r�mn

�0
� + K�mn

= − iL �
j�N

A j��mn�t��� j0
+ �+�� j0

+ � − � j0
− �+�� j0

− ��

+ i�̇mn���� j0
+ �+�� j0

+ � − � j0
− �+�� j0

− ��
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+ i�mn����̇ j0
+ �+�� j0

+ � − �̇ j0
− �+�� j0

− ��� . �19�

Supposing that �dif��k
−1 the third term on the right-hand side

of �19� can be neglected and using the notation �+j
�

=�+�� j0
�� we obtain

�̇mn�L �
j�N

A j���� j0
+ �+j

+ − � j0
− �+j

− �� − �0�r� �r�mn

�0
�

− �K + iL �
j�N

A j�� j0
+ �+j

+ − � j0
− �+j

− ���mn = 0. �20�

To lowest order in �̇mn, the real part of �20� gives the disper-
sion relation ��k ,�k�=0 with

�K − L �
j�N

A j�� j0
+ P�� j0

+ � − � j0
− P�� j0

− ����mn − �0�r� �r�mn

�0
�

= ��k,�k� . �21�

The imaginary part of �20� gives the growth rate �k

= �̇mn /�mn,

�k =


 �
j�N

A j�� j0
+ ��� j0

+ � − � j0
− ��� j0

− ��

�� �
j�N

A j�� j0
+ P�� j0

+ � − � j0
− P�� j0

− ��
. �22�

B. Quasilinear analysis

We now follow the analysis by introducing �2v j
�, the

second-order perturbation in v j
�, such that ��2v j

���,z�0. We
then plug in the expansion v j

�=v j0
� +�v j

�+�2v j
� and use the

WKB ansatz �16� into Eqs. �11� and �15�. The first term on
the right-hand side of �15�, the free-streaming part of the
solution, will rapidly damp in �11� because of the phase mix-
ing in the k integration on a time � fs��	��k−k ·V j0

���−1

��	k · �
��k

�k −V j0
���−1 provided that

�i� the Fourier transform of the initial condition
�v j

��0�� j��1,N� and the electrical potential � are smooth func-
tions in k.

�ii� We have
��k

�k �V j0
�.

�iii� We have �	��k−k ·V j0
���−1��k

−1 ,�dif.
In fact we have the following time ordering:

�d,� fo � �k
−1,� fs,�ac � �k

−1,�dif,�D � �tr = �b
−1,

where �ac, is the wave autocorrelation time ��ac�� fs for
resonant particles�, �D is the Dupree time �41�, i.e., the par-
ticle decorrelation time, and �tr=�b

−1 is the trapping time or
the inverse of the bounce frequency associated with this typi-
cal wave of the electric field disturbance. Actually this qua-
silinear analysis is justified for �dif��D only. Dropping the
free-streaming term because phase mixing leads to its decay
on a time � fs, after �� ,z� averaging and neglecting third-order
terms in the perturbation, we obtain

�tv j0
� + �t��2v j

���,z +
1

r
�r�r	

0

t

� j0
��t − s�K��t,s,V j0

��ds� = 0,

�23�

where

K��t,s,V j0
�� = �

�m,n��0

k�

B
�mn�t − s�

��̄mn�t�exp�i	
t−s

t

� j0
����d�� .

Again by phase mixing the sum over the couple �m ,n� or k
integration in expression �23� leads to the decay of K� in s
on time � fs, and when this time is shorter than �k

−1 we may
use �18�. Moreover, assuming the ordering �dif��k

−1, Eq.
�23� becomes

�tv j0
� + �t��2v j

���,z +
1

r
�r�J�� = 0 �24�

with

J j
��t� = r	

0

�

� j0
��t − s�K��t,s,V j0

��ds

= �
�m,n��0

	
0

� rk�

B
� j0

��t�

����mn�t��2 −
s

2

d

dt
��mn�t��2�eis�j0

�

ds

= �
�m,n��0

rk�

B
� j0

��t�

����mn�t��2 +
1

2

d

dt
��mn�t��2i����+�� j0

�� , �25�

where the extension of the s integration to infinity is justified
by the decay of K� in s. Let us now make the index decom-
position Z2�=D � Dc where D= ���= �m ,n��m�0� and Dc is
the complementary of the set D. Therefore �25� becomes

J j
� = �

��D

rk�

B
� j0

������22
��� j0
�� −

d

dt
����2��P�� j0

��� .

�26�

C. Obtaining a reaction-diffusion model

Finally we substitute the expression �26� into �24� and
associated, respectively, the first term of the right-hand side
of �26� to �tv j0

� and the second term on the right-hand side of
�26� to �t��2v j

���,z. Therefore, �tv j0
� satisfies a Fokker-Planck

equation with a nonlinear source term

�v j0
�

�t
=

1

r

�

�r
�F j

�v j0
� + D j

��v j0
�

�r
� +

1

r

�

�r
�Qj

���0

�r
� �27�

with resonant positive diffusion coefficients
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D j
� = 2
r �

��D
� k�

B
�2

����2���k − k · V j0
�� ,

friction coefficients

F j
� = �

��D
G j�

��1 + I j�
������2���k − k · V j0

�� ,

and source coefficients

Qj
� = �

��D
G j�

�I j�
� k�

k�B
����2���k − k · V j0

�� ,

where G j�
� =−�2
rqik�k�

2� / �miBk ·V j0
�� and I j�

� = �k��r�0� /
�Bk ·V j0

��.
Let us note that the bags are coupled by the equation of

the zonal flow �12�. Equation �27� for the radial transport
reveals the diffusive nature of the transport in the radial di-
rection which is, indeed, a well-known fact. Equation �27�
with Qj

�=0 expresses the radial diffusion of each bag inde-
pendently. Now, the existence of the source term due to Qj

�

in �27� couples the bags dynamics with the zonal flow �0
given self-consistently by Eq. �12�. Consequently, the system
�12� and �27� is a reaction-diffusion model describing the
weak-turbulence diffusion �direct energy cascade� which en-
ters in competition with the back reaction driven by the non-
linear diffusion term �last term in �27�� on the mean-zonal-
flow �inverse energy cascade�.

The present model, through the introduction of the water-
bag within the multifluid “Lebesgue” decomposition, pro-
vides a kinetic generalization of the usual fluid prescription
in a magnetized plasma. In such a plasma, if flow shear ex-
ists together with density-temperature �or pressure� gradient,
a source of the turbulence, the flow shear may suppress the
turbulence driven by pressure gradient relaxation. These
shear flows can be self-generated, in which case the Rey-
nolds stress tensor is their main driving term. There is an
energy transfer from the turbulent low-frequency electro-
magnetic �drift waves� fluctuations to these periodic zonal
flow fluctuations via either local �inverse energy cascade� or
nonlocal interactions in Fourier space. The back reaction of
self-generated shear flow, on pressure-gradient-driven turbu-
lence, is a key mechanism that governs the turbulent state
and the transport, especially it can lead to the formation of
transport barriers. In fact many nonlinear simulations show a
significant reduction of the transport when zonal flows are
present �7,8,42�. In a review of zonal flow phenomena �43�,
it is shown that poloidal velocity shear plays an important
role in regulating �suppressing� turbulent transport. In that
case the back reaction of shear flows on turbulence can take
the form of random shearing on turbulent eddies, leading to a
diffusion of drift waves action in the wave-number space kr.
In other words, the drift wave spectrum in kr spreads diffu-
sively.

Furthermore, our model seems, indeed, to have some uni-
versal properties for the reaction-diffusion process. In the
one-bag case, with v+=v− �zero temperature limit�, Eqs. �12�
and �27� have the same mathematical structure as ones en-
countered in chemotaxis models—namely the Keller-Segel
model �44�—to describe the collective transport �diffusion,

concentration, and aggregation� of cells attracted by a self-
emitted chemical substance in biological multicellular organ-
isms. In this picture the bags play the role of the density of
different cell groups and the zonal flow, through the mean
electrical potential, plays the role of the chemoattractant.

Finally the superposition of several bags, as N undamped
eigenmodes, allows us to recover kinetic features �nonlinear
resonant wave-particle interaction� of the phase-space flow
by the phase-mixing process of real frequencies leading to
gyrokinetic turbulence.

D. Conservation laws

If we now integrate the equation on ��2v j
���,z we obtain

��2v j
���,z =

1

r
�r �

��D

rk�

B
� j0

�����2��k
P�� j0

�� . �28�

As we will see below the term ��2v j
���,z yields the wave

momentum and the particle contribution to energy density.
We now show that the density, momentum, and energy are
conserved at second order in the perturbation. Using Eq.
�27�, after integrating over the cylinder we obtain easily the
conservation of the total density,

dn0

dt
=

d

dt
�
j�N

A j	 rdr�v j0
+ − v j0

− � = 0.

Let us now compute

d

dt
�I0 + I2� =

d

dt�1

2 �
j�N

A j	 rdr�v j0
+2

− v j0
−2

�

+ �
j�N

A j	 rdr�v j0
+ ��2v j

+��,z − v j0
− ��2v j

−��,z�� .

Using Eqs. �27� and �28�, after some algebra we obtain

d

dt
�I0 + I2� =	 dr �

��D
2


rk�

B
����2�r�
���

−	 dr �
��D

rk�

B

d����2

dt
����r�
�P��

with �= �
k�

−
�r�0k�

Bk�
and


�f� = �
j�N

A j�� j0
+ f�� j0

+ � − � j0
− f�� j0

− �� ,

where f denotes a generic one-dimensional distribution. Fi-
nally using �22� we obtain

d

dt
�I0 + I2� = 0,

which means that the momentum is conserved at second or-
der in the perturbation �v j

�. Let us now compute
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d

dt
�K0 + K2� =

d

dt�1

3 �
j�N

A j	 rdr�v j0
+3

− v j0
−3

�

+ �
j�N

A j	 rdr�v j0
+2

��2v j
+��,z − v j0

−2
��2v j

−��,z�� .

Using Eqs. �27� and �28�, after some algebra, we obtain

d

dt
�K0 + K2� =	 dr �

��D
2


rk�

B
����2�r�

2
���

−
d

dt
	 dr �

��D

rk�

B
����2����r�

2
�P�� .

�29�

Using the dispersion relation �21� the last term on the right-
hand side of �29� becomes

−
dE�

dt
−	 dr �

��D

rk�

B

d����2

dt
�r�

2��
�P� ,

where E� denotes the electrical potential energy. Finally us-
ing �22� and �29� we obtain

d

dt
�K0 + K2 + E�� =

d

dt
�K0 + E� = 0

which yields the conservation of the energy at second order
in the perturbation �v j

�. The term E stands for the total wave
energy

E =	 rdr �
��D

2� k�

Bk�
�2�r

2�0

L
������ .

IV. SELF-CONSISTENT QUASILINEAR
GYRO-WATER-BAG CODE

In the preceding section we have derived a nonlinear
reaction-diffusion model, using standard quasilinear time or-
dering assumption. The model is written in a formal way in
order to allow further analytical studies: Whether this model
is able to describe transport barrier, intermittency, the mag-
nitude of zonal flow, anomalous heat transport, etc., are ques-
tions which will be addressed in a forthcoming paper. The
most important question now is to check the quasilinear hy-
pothesis through a full numerical solution of the gyro-water-
bag equations �7� and �8�.

A. Rewriting the gyro-water-bag equations

Since Eqs. �12� and �27� are formally written, they are not
suited for direct numerical comparison with Eqs. �7� and �8�.
In this section we shall rewrite a quasilinear system suitable
for numerical purpose. Every unknown is expanded as

f�t,r,�,z� =
1

2
f0�t,r,z� +

1

2 �
m�0

fm�t,r,z�ei�m + c . c . ,

�30�

where f0 is a real number and fm is a complex number. In-
troducing the expansion �30� into Eq. �7�, where we assume

the asymptotic limit k��i→0 �drift kinetic limit, J�→1�,
after some algebra we obtain

�tv j0
� + �z�v j0

�2

2
+ �0� +

1

2rB
�
m

m�r�Vjm
� � �m�

+
1

4�
m

�z��Vjm
� �2� = 0, �31�

�tVjm
� +

1

r
�r�rHm�Vjm

� −
1

r
�r�rK jm

� ��m + �z�v j0
�Vjm

� + �m� + F

= 0, �32�

where

Hm =
m

Br
�0I, K jm

� =
m

Br
v j0

�I, I = �0 − 1

1 0
� ,

Vjm
� = �Re v jm

�

Im v jm
� �, �m = �Re �m

Im �m
�, F = �F1

F2
�

with

F1 =
1

2Br
�

�

m��r���̂Vjm−�
� � + m��r�m+� � Vj�

��

+ m�Vjm+�
� � �r��� + ��r�Vjm+�

� � ���

− �� + m��r��m+� � Vj�
�� − ��r����̂Vjm−�

� �

+ �
�

1

4
�z�Vj�

� ·̂Vjm−�
� � +

1

2
�z�Vj�

� · Vjm+�
� � �33�

and

F2 =
1

2Br
�

�

m��r��·̂Vjm−�
� � + m��r�m+� · Vj�

��

+ m�Vjm+�
� · �r��� + ��r�Vjm+�

� · ���

− �� + m��r��m+� · Vj�
�� − ��r���·̂Vjm−�

� �

+ �
�

1

4
�z�Vj�

��̂Vjm−�
� � +

1

2
�z�Vj�

� � Vjm+�
� � . �34�

In �33� and �34� we have used the notations U·̂V=U1V1

−U2V2, U�̂V=U1V2+U2V1, where U and V are two-
dimensional vectors. The quadratic nonlinear terms in Vjm

� ,
which lead to the coupling of modes and to the existence of
a saturation regime will be neglected in �32� and kept in Eq.
�31�. In other words, the term F is dropped in �32�. Using the
dimensionless ordering parameters

�� =
e�̄

kBT̄0

, �k =
k�

k�

, �� =
�

�0
=

k�vthi

�0
, �35�

Eqs. �31� and �32�, in dimensionless form become
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�tv j0
� + �z�v j0

�2

2
+ Zi���0� + �

m�0
�z� �Vjm

� �2

4
�

+ �
m�0

�1
m

2r
�r�Vjm

� � �m� = 0, �36�

�tVjm
� + �1

1

r
��r�rHm�Vjm

� − �r�rK jm
� ��m�

+ �z�v j0
�Vjm

� + Zi���m� = 0, �37�

where �1=�����k
−2Zi and B=1 in the definition of Hm and

K jm
� . Substituting the expansion �30� into Eq. �8� with the

asymptotic limit k��i→0 �drift kinetic limit, J�→1� and
using the ordering dimensionless parameters �35� we obtain
the dimensionless equations

− �2
1

r
�r�rni0�r�0� +

���ni0

Ti0
��0 − ���0�M�

= �
j=1

N

A j�v j0
+ − v j0

− � − ni0 �38�

and

− �2
1

r
�r�rni0�r�m� + ��2

m2

r2 +
���ni0

Ti0
��m

= �
j=1

N

A j�Vjm
+ − Vjm

− � , �39�

where �2=����
2 �k

−2Zi. Finally we are interested in solving the
system formed by Eqs. �36�–�39�.

B. Numerical method

This section is devoted to the numerical approximation of
the system �36�–�39�. To this aim we use the Runge-Kutta
discontinuous Galerkin method �45�. We first depict the
method for the transport equations �36� and �37�. Let � be
the domain of computation and Mh a partition of � of ele-

ment K such that �K�Mh
K̄=�̄, K�Q= � , K ,Q�Mh ,

K�Q. We set h=maxK�Mh
hK, where hK is the exterior di-

ameter of a finite element K. The first step of the method is
to write Eqs. �36�–�39� in a variational form on any element
K of the partition Mh. Using a Green formula, for any
enough regular test function  , for all j=1, . . . ,N, we con-
sider the variational form of �36�,

�t	
K

dKv j0
� −

1

2
	

K

dKv j0
�2

�z + 	
�K

d!f�v j0
��nK,z 

+ Zi��	
K

dK E0z − �1 �
m�0

m�	
K

dKVjm
� � �m�r�  

2r�
− 	

�K

d!Vjm
� � �mnK,r

 

2r� − �
m�0

�1

4
	

K

dK�Vjm
� �2�z 

−
1

2
	

�K

d!�f�Re Vjm
� � + f�Im Vjm

� ��nK,z � = 0 �40�

with

	
K

dK E0z = − 	
K

dK�0�z + 	
�K

d!�0nK,z , �41�

where �K denotes the boundary of K, nK denotes the outward
unit normal to �K, and f�·�= �·�2 /2. Let us introduce the no-
tations Vjm

� = �Re Vjm
� , Im Vjm

� �T= �Vjm
�1 ,Vjm

�2�T, �"= �−1�", and
#=mod�" ,2�+1. Therefore, for "� �1,2� and j=1, . . . ,N,
we consider the following variational form of Eqs. �37�:

�t	
K

dKVjm
�" − 	

K

dKv j0
�Vjm

�"�z + �1	
K

dK
�"m

r
�E0rVjm

�#

− �rv j0
��m

#� + 	
�K

d!v j0
�Vjm

�"nK,z 

+ Zi��	
K

dKEmz
"  = 0, �42�

where

	
K

dK E0r = − 	
K

dK�0�r + 	
�K

d!�0nK,r , �43�

	
K

dK�rv j0
� = − 	

K

dKv j0
��r + 	

�K

d!v j0
�nK,r , �44�

	
K

dK Emz
" = − 	

K

dK�m
"�z + 	

�K

d!�m
"nK,z . �45�

We now seek an approximate solution �vh,j0
� , Re Vh,jm

� ,
Im Vh,jm

� , �h,0, Re �h,m, Im �h,m� whose restriction to the
element K of the partition Mh of � belongs, for each value
of the time variable, to the finite-dimensional local space
P�K�, typically a space of polynomials. Using the variational
weak form �40�–�45� of the gyro-water-bag model �36� and
�37� and the discontinuous Galerkin projection procedure
�see Appendix A for more details�, for all K�Mh, we obtain
the ordinary differential equation �ODE�,

M
d

dt
Xh�K�

= LK,Xh
��vh,j0�K��

� ,Vh,jm�K��

� ,�h,0�K��
, ��h,m�K��

�K�¯ � K̄ � �K�� ,

where Xh denotes a generic unknown such that

Xh � � = ��vh,j0
� � j��1,N�,�Vh,jm

� � j��1,N�,m�0� .

In the general case, the local mass matrix M of low order
�equal to the dimension of the local space P�K�� is easily
invertible. If we choose orthogonal polynomials the matrix
M is diagonal. Here we take Legendre polynomials as
L2-orthogonal basis function. Our code can run with Leg-
endre polynomials of any degree, but for the numerical re-
sults exposed in the next section we choose polynoms of
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degree 2. Moreover, we take a rectangular element K=Kpq
= ���r ,z���rp−r��	r /2, �zq−z��	z /2�, where 	r and 	z are
the space discretization parameters. Therefore, we must
solve the ODE,

d

dt
Xh = Lh,Xh

�vh,j0
� ,Vh,jm

� ,�h,0,�h,m� , �46�

for all Xh��. In order to solve �46� we can use strong
stability-preserving Runge-Kutta methods �46� �see Appen-
dix B for more details�. It now remains to solve the Helm-
holtz equations �38� and �39�. If we set �=0, Eqs. �38� and
�39� take the general form

�r$ + �� = � on � , �47�

�−1$ = − �r� on � , �48�

��r=rmin� = 0 or �r��r=rmin� = 0 ∀ z � �z, �49�

��r=rmax� = 0 ∀ z � �z, �50�

��r,z� = ��r,z + Lz� ∀ r � �r �51�

with �=�r��z= �rmin,rmax�� �0,Lz�. The term � /r stands
for the right-hand side of �38� or �39�, ��r�
=���k

−2��
2 Zirni0�r�, and we define ��r�=���rni0�r� /Ti0�r� for

Eq. �38� or ��r�=r����
2 �k

−2Zim
2 /r2+���rni0�r� /Ti0�r� for Eq.

�39�. In order to be consistent with the space discretization of
the gyro-water-bag equations �36� and �37� we also solve the
problem �47�–�51� within the framework of discontinuous
Galerkin methods which leads to the inverse of a sparse lin-
ear system. For more details we refer the reader to Appendix
C.

V. NUMERICAL RESULTS

A. Construction of a gyro-water-bag equilibrium

The first problem is to determine the physically relevant
gyro-water-bag equilibrium which will be used to initialize
the numerical scheme depicted previously. In order to de-
scribe ITG modes, we choose to construct radial profiles in
terms of temperature and density profiles only. The continu-
ous equilibrium distribution function is assumed as

feq�r,v�� =
ni0�r�

Ti0�r�

F� v�


Ti0�r�
� , �52�

where ni0�r� and Ti0�r� are the normalized radial profiles of
ion density and temperature. The function F is a normalized
even function, thus for a local Maxwellian distribution, we
obtain F�x�=exp�−x2 /2� /
2
. The first stage, will consist in
constructing the gyro-water-bag model at r=r0 and then ex-
tends it for all r� �rmin,rmax�. To this aim, as in �32�, we use
the method of equivalence between the radial derivatives of
the moments of the stepwise gyro-water-bag and the radial
derivatives of the corresponding continuous function. If we
define, for �=0,2 , . . . ,2�N−1�, the r derivative of the � mo-
mentum of feq as

Mr
��feq� = 	

R
dv��rfeq

and the r derivative of the � momentum of the gyro-water-
bag as

Mr
��GWB� = �

j

N

2A jv j0
� �rv j0

then, using integration by parts, the equality Mr
��feq�

=Mr
��GWB� at the point r=r0 implies

�
j

N

" j�r0��vj0

� �r0��v j0�r0���

= ��ni0

� �r0� +
�

2
�Ti0

� �r0���
Ti0�r0���M��F� , �53�

where M��F� is the �th-order moment of the function F,
" j =2v j0A j /ni0, �vj0

� measure the local radial gradient of the
bag v j0, �ni0

� , and �Ti0

� are the diamagnetic frequencies de-
fined by

�vj0

� =
k�Ti0

qiB

d ln v j0

dr
=

k�Ti0

qiB
%vj0

,

�ni0

� =
k�Ti0

qiB

d ln ni0

dr
=

k�Ti0

qiB
%ni0

,

�Ti0

� =
k�Ti0

qiB

d ln Ti0

dr
=

k�Ti0

qiB
%Ti0

.

We now introduce the unknown coefficients # j and � j, for
j=1, . . . ,N, such that the constraint

" j�vj0
= � j�ni0

� + 1
2# j�Ti0

� �54�

is satisfied at the point r=r0. If we substitute �54� into �53�
then, the unknown gyro-water-bag parameters �" j ,# j ,� j�
must satisfy the following linear system at the point r=r0:

�
1�j�N

" j�r0��v j0�r0��� = �� + 1��
Ti0�r0���M��F� , �55�

�
1�j�N

# j�r0��v j0�r0��� = ��
Ti0�r0���M��F� , �56�

�
1�j�N

� j�r0��v j0�r0��� = �
Ti0�r0���M��F� . �57�

Nevertheless in Eqs. �55�–�57� the matrix has the form of a
Vandermonde system which becomes ill-conditioned for a
great number of bags N. A more convenient solution can be
found for a large number of bags. Let us consider a regular
sampling of the v� axis, i.e., v j0�r0�= �j− 1

2 �	v, with 	v
=2vmax / �2N−1� and set Fj = feq�r0 ,v j0�r0�− 	v

2 �. If we re-
quired that Eqs. �55�–�57� are satisfied at second order in 	v,
then, using a trapeze quadrature rule to compute M��F�, we
obtain the solutions
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" j�r0� = 2A j
v j0�r0�
ni0�r0�

= 2�Fj − Fj+1�
v j0�r0�
ni0�r0�

,

� j�r0� = 	v
Fj + Fj+1

ni0�r0�
, # j�r0� = " j�r0� − � j�r0� .

Therefore gyro-water-bag parameters �A j� j��1,N�, and the ini-
tial condition for slowly time-evolving part v j0

��t ,r ,z�, for j
=1, . . . ,N, are given by

A j = Fj − Fj+1, �58�

v j0�r� = 
Ti0�r�F−1� f j


Ti0�r�
ni0�r�

� , �59�

v j0
��0,r,z� = � v j0�r� �60�

with f j = feq�r0 ,v j0�r0��. If we now differentiate �59� with re-
spect to r, with F a normalized Maxwellian, we obtain

%vj0
�r� =

1

2
%Ti0

�r��1 −
Ti0�r�
v j0

2 �r�� +
Ti0�r�
v j0

2 �r�
%ni0

�r� �61�

which denotes that

%vj0
� O�%T,%n,

1

v j0
2 � ,

and thus numerical problems could appear. If we keep a uni-
form v� discretization to determine the gyro-water-bag equi-
librium and if we want to use a large number of bags we see
that %v10

can explode as the first bag tends to zero. The radial
profiles of the ion density and temperature are fixed in time
and are deduced by integration of their gradient profiles

%ni0
�r� =

1

ni0�r�
dni0�r�

dr
= − %ni0

0 cosh−2� r − r0

	rni0

� ,

%Ti0
�r� =

1

Ti0�r�
dTi0�r�

dr
= − %Ti0

0 cosh−2� r − r0

	rTi0

� ,

where r0, %ni0

0 , %Ti0

0 , 	rni0
, and 	rTi0

are free parameters. We
next define the parameter ��r�=d�ln Ti0� /d�ln ni0� which de-
termines locally if an ITG instability can develop ��&2� or
not ���2�. The initial perturbation bag Vjm

� �0� is chosen as

Vjm
� �0,r,z� = v j0

��0,r,z�p�r��p�z� ,

where p�r� is an even exponential function centered in r0
such that limr→rmin

p�r�=0 and limr→rmax
p�r�=0. The pertur-

bation �p is initialized with a cosine function with a single
toroidal mode n or with a bath of modes

�p�z� = �
n

�n cos�2
n

Lz
z +  n� ,

where �n and  n represent, respectively, a random amplitude
and a random phase for the mode n.

B. Normalization

The numerical scheme developed in Sec. IV B, is done
using the normalized equations �36�–�39�. In our case, the

temperature Ti0 and Te0 are normalized to T̄0, which is de-
fined such that Ti0�r0� /T0=1. The longitudinal direction is
normalized to k�, the characteristic fluctuation parallel wave
number and the transversal direction to k�, the characteristic
fluctuation perpendicular wave number. The velocity is nor-
malized to the ion thermal velocity vthi=
Ti0 /mi and the
time to characteristic fluctuation frequency �−1= �k�vthi�−1.
Finally the particle density n is normalized to n0=Avthi
and the electrical potential � is normalized to the character-
istic fluctuation potential �̄. Moreover we define the dimen-
sionless ordering parameters �k=k� /k�, ��=� /�0, ��

=e�̄ / �kBT̄0�, ��eq
=�i /L�eq

, and ��=�ik�, where �i is ion
Larmor radius and L�eq

is the characteristic background
plasma density and temperature nonuniformity length scale.
The usual gyrokinetic ordering is achieved for �k������

���eq
���10−3 and ���1. For longer wavelengths such

that ���1 we obtain the drift kinetic ordering.

C. ITG instability

The ITG instabilities correspond to small scale instabili-
ties which start in the region where local temperature gradi-
ent exceeds local density gradient by some amount. Due to
the existence of energy invariants in the system the pertur-
bated modes can not grow unbounded and after a linear
phase of exponential increase, a local quasilinear saturation
takes place leading to flattening of the local temperature pro-
file. In the nonlinear phase, the existence of broad wave
spectrum involving mode coupling phenomena and nonlinear
resonant wave-particle interaction leads to a state of devel-
oped plasma turbulence and to the appearance of anomalous
heat transport.

Figures 3–5 illustrate some examples of initial radial pro-
files that we consider for ion density and temperature at equi-
librium. In order to compare numerical results to analytical
ones and thus to validate the code, we consider the case
where in Eqs. �38� and �39� there is no polarization drift, i.e.,
the second-order differential operator in the transverse direc-
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FIG. 3. �Color online� Initial ion density profile.
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tion is removed ��2=0�. In that case a local �in the radial
direction� linear analysis can be performed �see �32,47��, re-
sulting in algebraic dispersion relation which can be rigor-
ously solved and giving rise to analytical growth rate for the
ITG instability. For this test case we take the dimensionless
parameters such as ��=�k=��=10−3, the radial domain such
as r� �1,5�, and the perturbative toroidal-poloidal mode
such as �m ,n�= �20,1�. The results are summarized in Table
I.

In spite of good agreement between numerical and theo-
retical linear growth rate values, the model �36�–�39� without
polarization drift ��2=0� is not well-posed and thus has no
sense in a nonlinear regime because there is neither differen-
tial operator nor physical mechanism which prevent the ex-
citation of small scale without damping. In other words, all
the modes in the limit k�→� are unstable which means that
the solution blows up in a finite time.

Therefore, the next test case is to compare the linear
growth rate of ITG instability given by the quasilinear model
�36�–�39�, referred to as QL, which is solved by a Runge-
Kutta discontinuous Galerkin method and the full nonlinear
model �7� and �8�, referred to as NL, which is solved by a
Runge-Kutta semi-Lagrangian method and has been devel-
oped in another paper �48�. For this test case we choose a
radial domain such as r� �1,9� and z ,�� �0,2
�. The di-
mensionless parameters ��, �k, and �� are set to 10−3 and the

number of bags is N=6. The results are summarized in Table
II. From Table II we observe that the quasilinear model and
the nonlinear model give the same ITG instability growth
rate in the linear regime.

Let us now look at the nonlinear regime and saturation
level of ITG instability. Figures 6 and 7 show the evolution
of the logarithm of L2-norm of the electrical potential at r
=r0 for the QL and NL models. On the other hand, Figs. 8
and 9 depict the corresponding mean heat flux

Q�t,r� = �
j

A j	 d�

2


dz

Lz
�v j

+3

3
−

v j
−3

3
��ez � ��� · er

at r=r0. For the case �Figs. 6 and 8� where radial gradients
are %n=−0.009k�

−1 and %T=−0.067k�
−1, the perturbative

mode is �m ,n�= �10,3� and the discretization parameters
are 	tQL=	tNL=4�10−3�−1��4�0

−1�, 	rQL=1.25�10−1k�
−1,

	rNL=6.25�10−2k�
−1, 	zQL=9.80�10−3k�

−1, 	zNL=4.90

TABLE I. Comparison of analytical and numerical growth rate
in the case of no polarization drift.

Case %n=1.5�10−4 %n=1.5�10−4

%T=1.5�10−3 %T=1.5�10−3

N=8 N=10

vmax=6 vmax=5

�=1 �=0.2

�theory 0.80 1.80

�numeric 0.85 1.83

Case %n=1.5�10−4 %n=1.5�10−4

%T=7.5�10−4 %T=6.45�10−4

N=10 N=10

vmax=5 vmax=5

�=1 �=1

�theory 0.22 0.097

�numeric 0.22 0.095

TABLE II. Comparison of QL and NL growth rate.

Case %n=−0.02 %n=−0.03 %n=−0.04

%T=−0.1625 %T=−0.24 %T=−0.32

�m ,n�= �6,3� �m ,n�= �6,3� �m ,n�= �6,3�
�QL 1.70 2.12 2.44

�NL 1.70 2.12 2.44

Case %n=−0.02 %n=−0.01 %n=−0.01

%T=−0.40 %T=−0.10 %T=−0.08

�m ,n�= �6,3� �m ,n�= �6,3� �m ,n�= �6,3�
�QL 4.30 1.25 0.74

�NL 4.30 1.25 0.74

Case %n=−0.01 %n=−0.009 %n=−0.009

%T=−0.075 %T=−0.069 %T=−0.067

�m ,n�= �6,3� �m ,n�= �10,3� �m ,n�= �10,3�
�QL 0.56 0.65 0.568

�NL 0.56 0.65 0.568
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�10−2k�
−1, 	�NL=2.45�10−2, Nr,QL=64, Nr,NL=128, Nz,QL

=64, Nz,NL=128, and N�,NL=256. For the case �Figs. 7 and 9�
where radial gradients are %n=−0.01k�

−1 and %T=−0.1k�
−1, the

perturbative mode is �m ,n�= �6,3� and the discretization pa-
rameters are 	tQL=4�10−3�−1��4�0

−1�, 	tQL=7.85
�10−3�−1��7.85�0

−1� 	rQL=1.25�10−1k�
−1, 	rNL=6.25

�10−2k�
−1, 	zQL=	zNL=9.80�10−2k�

−1, 	�NL=4.90�10−2,
Nr,QL=64, Nr,NL=128, Nz,QL=Nz,NL=64, and N�,NL=128. In
every case �=1, ��=�k=��=10−3, vmax=5vthi, rmin=1k�

−1

�1�i, rmax=9k�
−1�9�i, z� �0,2
k�

−1�, �� �0;2
�, and N
=6.

Although in the linear regime QL and NL models give the
same results, we observe that in the nonlinear regime their
behavior slightly differs, as expected. We notice that the
level of L2-norm of electrical potential �Figs. 6 and 7� and
mean heat flux �Figs. 8 and 9� are always a little greater for
QL than NL. This remark can be explained by the fact that in
the QL model most of the nonlinear couplings are removed
and thus the saturation takes place with a time delay and an
additional amount of electrical energy. Even if in the nonlin-
ear regime QL and NL solutions are different, they remain
qualitatively at the same level. Therefore, the QL model con-
stitutes a relative good approximation of the NL model even
in the nonlinear phase. As a result, the underlying idea of the
quasilinear analysis, i.e., the diffusive nature of the radial
transport �see the radial Fokker-Planck equation �27��, is also

validated in the numerical simulation framework by the nu-
merical approximation of the QL model, allowing us to ob-
tain an estimate of the turbulent transport which is of the
same order as the NL one.

Finally let us turn to the invariant conservation in both
codes. It is well known that the Vlasov equation conserves
many physical and mathematical quantities such that mass,
kinetic entropy, total energy, every Lp-norm, and more gen-
erally any phase-space integral of #�f� where # is a regular
function. Obviously these conservation properties are re-
trieved with the gyro-water-bag model by using the distribu-
tion function �6� in the definition of the considered quanti-
ties, resulting in expressions involving integrals on the bags.
We define the relative error RE�Q� of the conserved quantity
Q as RE�Q��t�= �Q�t�−Q�0�� /Q�0�. Therefore, Figs. 10 and
11 show the evolution of RE��f�L1�, Figs. 12 and 13 represent
RE��f�L2�, and Figs. 14 and 15 depict the time evolution of
RE�entropy of f�. For the QL code, in the case correspond-
ing to %n=−0.009 and %T=−0.067 the relative error of the
L2-norm, L1-norm �or mass�, and kinetic entropy is less
than 10−12 and for the case where the radial gradients are
%n=−0.01 and %T=−0.1, their relative errors remain below
10−9. We notice that these conservation are better than those
obtained for the NL code in the nonlinear regime. These
results can be explained by the fact that growing small scale
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FIG. 11. �Color online� Relative error on the L1-norm �or mass�
of f , %n=−0.01, %T=−0.1.
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FIG. 12. �Color online� Relative error on the L2-norm of f , %n

=−0.009, %T=−0.067.
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FIG. 13. �Color online� Relative error on the L2-norm of f , %n

=−0.01, %T=−0.1.
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FIG. 14. �Color online� Relative error on the entropy of f , %n

=−0.009, %T=−0.067.
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poloidal structures whose size is smaller than the cell size are
smoothed and then information is irreversibly lost resulting
in deviations for every conserved quantity. Let us notice that
in the NL code all poloidal modes, bounded by the mesh
discretization in �, can participate in the nonlinear regime
whereas in the QL code they are fixed a priori �here to m
=10 or m=6�. Nevertheless even for the NL code the relative
error always stays less than 10−4.

The conservation of energy is most difficult to satisfy as
in PIC codes �49� or Vlasov codes �10�. In term of energy
conservation, the NL model behaves better than the QL one.
In the light of the quasilinear analysis previously done, we
know that the total energy is only conserved up to second
order in the perturbation, thus it explains why energy conser-
vation is less good in the case of the QL model. However,
this conservation is still correct, even quite good, as the
relative error always remains below 3�10−4 for %n
=−0.009 /%T=−0.067 and below 5�10−3 for %n=−0.01 /%T
=−0.1 �see Figs. 16 and 17�.

VI. CONCLUSION

In this paper we have considered the water-bag weak so-
lution of the Vlasov gyrokinetic equation, resulting in the

development of the gyro-water-bag model. From this model
we have shown the diffusive nature of the radial transport,
through an analytical quasilinear analysis leading to Fokker-
Planck equations for the bags in the radial direction. Nonlin-
ear diffusion terms on the mean flow �zonal flow� appear as
source terms of the Fokker-Planck equations which lead to a
reaction-diffusion model. This is the back reaction of the
turbulent diffusion which can lead to the formation of trans-
port barriers. This reaction-diffusion model has been checked
by numerical simulations through the derivation of a self-
consistent quasilinear code, suitable for a numerical simula-
tion framework, and making use of a Runge-Kutta discon-
tinuous Galerkin scheme. In order to validate the quasilinear
approach we have performed various comparisons with a full
nonlinear gyro-water-bag code �48�. As a result, the quasilin-
ear approach proves to be a good approximation of the full
nonlinear one since the quasilinear estimate of the turbulent
transport is of the same order of the nonlinear one. Further
developments using reaction-diffusion-water-bag model �per-
tinent to magnetic confinement purpose� are now under con-
sideration. Although comparisons between gyro-water-bag
code and gyrokinetic code is beyond the scope of the present
paper, it should be done and it will be the starting point of
further studies.

APPENDIX A: DISCONTINUOUS GALERKIN
DISCRETIZATION OF THE

GYRO-WATER-BAG MODEL

Let us first set

Ph��� = ��' � '�K� � P�K�, ∀ K � Mh� ,

where P�K� is a space of polynomials of any degree on the
finite element K. Therefore, to determine the approximate
solution �vh,j0

� ,Re Vh,jm
� , Im Vh,jm

� ,�h,0 ,Re �h,m , Im �h,m��K�
� �6P�K� for t�0, using the variational formulations
�40�–�45�, on each element K of Mh we impose that, for all
 h�P�K�, for all j=1, . . . ,N, for "� �1,2�,

�t	
K

dKvh,j0
�  h −

1

2
	

K

dK�vh,j0
� �2�z h + 	

�K

d!�fnK,z��vh,j0
� �

� h + Zi��	
K

dK hEh,0z − �1 �
m�0

m�	
K

dKVh,jm
�

� �h,m�r� h

2r� − 	
�K

d!�Vh,jm
� � �h,mnK,r�

 h

2r�
− �

m�0
�1

4
	

K

dK�Vh,jm
� �2�z h −

1

2
	

�K

d!��fnK,z��Re Vh,jm
� �

+ �fnK,z��Im Vh,jm
� �� h� = 0 �A1�

with
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FIG. 16. �Color online� Relative error on the total energy, %n

=−0.009, %T=−0.067.
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FIG. 17. �Color online� Relative error on the total energy, %n

=−0.01, %T=−0.1.
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K

dK hEh,0z = − 	
K

dK�h,0�z h + 	
�K

d!��h,0nK,z� h

�A2�

and

�t	
K

dKVh,jm
�"  h − 	

K

dKvh,j0
� Vh,jm

�" �z h

+ �1	
K

dK
�"m

r
�Eh,0rVh,jm

�# − �rvh,j0
� �h,m

# � h

+ 	
�K

d!�vh,j0
� Vh,jm

�" nK,z� h + Zi��	
K

dKEh,mz
"  h = 0,

�A3�

where

	
K

dK hEh,0r = − 	
K

dK�h,0�r h + 	
�K

d!��h,0nK,r� ,

�A4�

	
K

dK�rvh,j0
�  h = − 	

K

dKvh,j0
� �r h + 	

�K

d!�vh,j0
� nK,r� h,

�A5�

	
K

dK hEh,mz
" = − 	

K

dK�h,m
" �z h + 	

�K

d!��h,m
" nK,z� h.

�A6�

In Eqs. �A1�–�A6� we have replaced the flux terms at the
boundary of the cell K, by numerical fluxes �bracket nota-
tion� because the terms arising from the boundary of the cell
K are not well defined or have no sense since all unknowns
are discontinuous �by construction of the space of approxi-
mation� on the boundary �K of the element K. Now it re-
mains to define these numerical fluxes. For two adjacent
cells K� and Kr �r denotes the right cell and � the left one�
of Mh and a point P of their common boundary at which
the vector nK$, $� �r ,�� are defined, we set  h

$�P�
=lim�→0  h�P−�nK$� and call these values the traces of  h
from the interior of K$. Therefore, the numerical flux at P is
a function of the left and right traces of the unknowns con-
sidered. For example,

�fnK�,z��vh,j0
� ��P� = �fnK�,z��vh,j0

�,��P�,vh,j0
�,r �P�� .

Besides the numerical flux must be consistent with the non-
linearity fnK�,z, which means that we should have
�fnK�,z��v ,v�= f�v�nK�,z. In order to give monotone scheme in
case of piecewise-constant approximation the numerical flux
must be conservative, i.e.,

�fnK�,z��vh,j0
�,��P�,vh,j0

�,r �P�� + �fnKr,z��vh,j0
�,r �P�,vh,j0

�,��P�� = 0

�A7�

and the mapping v� �fnK�,z��v , ·� must be nondecreasing.
There exists several examples of numerical fluxes satisfying

the above requirements: The Godunov flux, the Engquist-
Osher flux, the Lax-Friedrichs flux �see �45��. For the nu-
merical fluxes �Vh,jm

� ��h,mnK,r�, �fnK,z��Re Vh,jm
� �, and

�fnK,z��Im Vh,jm
� � we choose the average flux. For fluxes

��h,0nK,z�, ��h,0nK,r�, �vh,j0
� nK,r�, and ��h,m

" nK,z� we can
choose the average, left-hand or right-hand flux. Finally for
the numerical flux �vh,j0

� Vh,jm
�" nK,z� we can choose two differ-

ent upwind fluxes

�vh,j0
� Vh,jm

�" nK,z� = �vh,j0
� nK,z�	Vh,jm

�",� + �vh,j0
� nK,z��Vh,jm

�",r ,

where

�vh,j0
� nK,z�	 = �vh,j0

�,��	�nK,z� ,

�vh,j0
� nK,z�� = �vh,j0

�,r ���nK,z�

or

�vh,j0
� nK,z� = �nK,z���1 − ��vh,j0

�,� + �vh,j0
�,r � ,

where �� �0,1� and with the notation z	=max�z ,0� and z�

=min�z ,0�.

APPENDIX B: RUNGE-KUTTA INTEGRATION SCHEME

For numerical stability considerations we must choose k
+1 stage Runge-Kutta method of order k+1 for DG discreti-
zation using polynomials of degree k if we do not want our
CFL number to be too small. As we take polynomial of de-
gree 2 we choose the third-order strong stability-preserving
Runge-Kutta method �46�:

Xh�t1� = Xh�tn� + 	tLh,Xh
�vh,j0

� �tn�,Vh,jm
� �tn�,�h,0�tn�,�h,m�tn�� ,

Xh�t2� = 3
4Xh�tn� + 1

4Xh�t1�

+ 1
4	tLh,Xh

�vh,j0
� �t1�,Vh,jm

� �t1�,�h,0,�t1�,�h,m�t1�� ,

Xh�tn+1� = 1
3Xh�tn� + 2

3Xh�t2�

+ 2
3	tLh,Xh

�vh,j0
� �t2�,Vh,jm

� �t2�,�h,0,�t2�,�h,m�t2�� ,

∀Xh�� with tn=n	T, 	t=T /NT, and t1 and t2 time between
tn and tn+1. For the discretization of the initial condition we
take �vh,j0

� �t=0� ,Vh,jm
� �t=0�� on the cell K to be the L2 pro-

jection of �v j0
��t=0� ,Vjm

� �t=0�� on �3P�K�.

APPENDIX C: DISCONTINUOUS GALERKIN
DISCRETIZATION OF THE

QUASINEUTRALITY EQUATION

Using Green formula we can rewrite the problems
�47�–�51� in a variational form suitable for its numerical ap-
proximation which consists in finding $h�Ph��� and
�h�Ph��� such that for all  h ,'h�Ph���, for all K�Mh,

	
K

�−1$h hdK = 	
K

�h�r hdK − 	
�K

�̂K hnK�,rd! ,

�C1�
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K

$h�r'hdK = 	
�K

$̂KnK�,r'hd! + 	
K

��h'hdK

− 	
K

�h'hdK , �C2�

where $h and �h are approximations to $=−��r� and �,
respectively, and �h stands for the approximation of � in
Ph���. The numerical fluxes $̂K and �̂K are approximations
to $=−��r� and to �, respectively, on the boundary of the
cell K. If we set n the outward unit normal to ��, Eh

° the set
of interior edges of Mh, Eh

� the set of boundary edges of Mh
and if we use the notations � h�= h

r nK�,r+ h
�nKr,r and � h�

= 1
2 � h

r + h
��, then for  ,'��K�Mh

L2��K� we have

�
K�Mh

	
�K

'K� K�nK�,rd! = 	
Eh

°
��'�� � + � ��'��d!

+ 	
Eh

�
' nrd! . �C3�

If we take  h=$h in �C1�, 'h=�h in �C2�, summing over the
cell K and using �C3� we obtain

Rh + 	
�

�−1�$h�2dK + 	
�

���h�2dK = 	
�

�h�hdK ,

�C4�

where

Rh = 	
Eh

°
��$̂h − $h���h� + ��̂h − �h��$h��d!

+ 	
Eh

�
„�h�$̂h − $h� + �̂h$h…nrd! . �C5�

Let us now choose the numerical fluxes as follows:

$̂h = �$h� + "11��h� + "12�$h� on Eh
° , �C6�

�̂h = ��h� − "11��h� + "22�$h� on Eh
° , �C7�

$̂h = $h
� + "11�h

�nr, �̂h = 0 on Eh
� � !D, �C8�

$̂h = 0, �̂h = �h
� + "22$h

�nr on Eh
� � !N, �C9�

where "11�0, "22&0, "12�R, and !D �respectively, !N�
denotes the boundary edges subset of Eh

� where Dirichlet con-
ditions �respectively, Neumann� are applied. If we plug
�C6�–�C9� into �C5� then we obtain

Rh = 	
Eh

°
�"11��h�2 + "22�$h�2�d! + 	

Eh
��!D

"11��h�2d!

+ 	
Eh

��!N

"22�$h�2d! & 0.

If we set �h=0 in �C4� then we obtain ��h�Eh
° =0, �h�!D�

=0,

$h=0, and �h=0 since �, �, "11�0, and "22&0. Therefore,

�h=0 on �̄ and the approximate solution �h is well defined.
Now that the method supplies a unique approximate solution,
let us compute it. If we take Eq. �C1�, sum over the cell K,
by using �C3� we obtain

a�$h, h� − b��h, h� = 0, ∀  h � Ph��� , �C10�

where the bilinear forms a�· , ·� and b�· , ·� are

a�u,v� = 	
�

�−1uvdK + "22�	
Eh

°
�u� �v�d!

+ 	
Eh

��!N

�unr��vnr�� ,

b�w,u� = 	
�

�ruwdK + 	
Eh

°
�u��"12�w� − �w��d!

− 	
Eh

��!N

unrw .

Using integration by part we obtain

− 	
K

$h�r hdK = − 	
�K

$hnK�,r hd! + 	
K

�r$h hdK .

�C11�

If we add �C2� to �C11�, sum over all cell K, and use �C3�
then we obtain

b�'h,$h� + c�'h,�h� = F�'h�, ∀ 'h � Ph��� ,

�C12�

where the bilinear form c�· , ·� and the linear form F�·� are,
respectively,

c�w,p� = "11	
Eh

°
�w� �p�d! + "11	

Eh
�

pwd! + 	
�

�pwdK

and

F�w� = 	
�

w�hdK .

The variational formulation �C10� and �C12� leads to the
matrix formulation, ∀�(h ,
h�,


h
TA)h − �h

TB(h = 0, (h
TB)h − (h

TC�h = (h
TFh,

which is equivalent to solving the linear system

)h = A−1BT�h, �BA−1BT + C��h = Fh. �C13�

We can solve �C13� by direct �LU decomposition, for ex-
ample� or iterative methods �conjugate gradient, for ex-
ample� of linear algebra. Let us note that if "22=0, then the
matrix A is diagonal by block, and therefore it is easier to
invert. Up to this point we have assumed that all integrals
involved in the definition of the numerical schemes are
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evaluated analytically. In fact all integrals can be reduced to
the computation

	
−1

1

f�*�d* . �C14�

To evaluate �C14� we use numerical integration or quadra-
ture rules whose concept is the approximation of the integral
by finite summation of the form

	
−1

1

f�*�d* � �
i=0

Q−1

�i f�*i� ,

where �i are specified constants or weights and *i represent
abscissae of Q distinct points in the interval −1�*i�1.
There are many types of numerical integrations �50�, here we
choose Gaussian quadrature rules. In order to keep high-
order accuracy, the quadrature rules should be exacted for
polynomials of degree 2k+1 on �K and 2k on K, where k is
the degree of polynomial approximation �45�.
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